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Blind Adaptive Detection of DS/CDMA Signals on
Time-Varying Multipath Channels with Antenna

Arrays Using High-Order Statistics
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Abstract—A new approach based on multiscale decomposition
and higher-order statistics is presented for the simultaneous solu-
tion of multiuser interference and time-varying multipath propa-
gation in the uplink of a cellular direct-sequence spread-spectrum
code-division multiple-access (DS/CDMA) system. Each channel
between the mobile transmitter and the base-station receiver is
unknown and arbitrarily varying with time. The optimum filter
achieving separation and multipath compensation is time-variant.
The typical approach in many multiuser detectors recently pro-
posed is to assume that the channel is almost static (time invariant)
and attempt detection according to this model. Slow variations of
the channels are then compensated using adaptive algorithms that
force the estimates (of the channels or of the separating filters) to
be constantly in search of a convergence point. If the channel coef-
ficients variations in time are fast with respect to the convergence
time of the adaptive algorithm, significant degradation may result.
In this work, we depart from this traditional approach and we in-
vestigate new kernels that more accurately can characterize the
time-varying nature of the detection problem. As a first step, we
show that the super-exponential framework can still be applied in
a time-variant environment. Then, we describe a multiresolution
decomposition of the filter components, essentially constraining
its variations in time to remain within the solution subspace. The
resulting algorithm overcomes some of the drawbacks associated
with slow convergence and insufficient tracking capability typical
of many blind approaches and several nonblind methods based on
the slow fading assumption.

Index Terms—Array signal processing, code-division multiple
access, higher order statistics, interference suppression, land
mobile radio cellular systems.

I. INTRODUCTION

T HE PERFORMANCE of code-division multiple-access
(CDMA) systems is severely degraded by frequency-se-

lective multipath radio-frequency propagation. The mitigation
of this effect based on the use of multiuser/multiantenna
detectors has attracted significant interest. The crucial point
of almost all of the proposed methods is based on the as-
sumption that the multipath channels are quasi-static, that is
time invariant over the length of the transmitted frame. Slow
variations of the channels are then compensated by using
adaptive algorithms that ultimately force the estimates (of the
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channels or of the separating filters) to be constantly in search
of a convergence point. If the channel coefficients variations
in time are fast with respect to the convergence time of the
adaptive algorithm, significant degradation may result. More-
over the critical and rather arbitrary quasi-static assumption
of the channel does not hold true in the vast majority of the
practical cases, especially in high-mobility environments
such as those found in macrocell applications. In this work,
we depart from the traditional approach and investigate new
methods that more accurately can characterize the time-varying
nature of the detection problem, and focus on a multiresolution
representation of the separating time-variant filter in each
component of its response, elaborating some ideas of [20] (and,
in a sense, [4]). We show that the super-exponential equations
already presented and derived in [11] and [15] are time varying
in presence of a time-varying channel. It is important to warn
the reader that the super-exponential scheme in a multichannel
setup (described and studied in [11] and [15]) is subject to
global convergence problems in some pathological cases. Since
experimentation has shown successful behavior of the method
in practice and because the main topic of the paper is not the
analysis of the convergence of the multichannel super-expo-
nential algorithm, we do not address the issue in the sections
that follow. The super-exponential algorithm is iterative in
nature and the transformation of the technique into a real-time
adaptive scheme places a significant challenge whenever the
multipath fading channel cannot be assumed static (which is
the case in most wireless macrocell systems). The unknown
separating filter time variations are decomposed using optimal
unconditional bases [3] such as orthonormal wavelet bases [1],
[2]. The wavelet transform (WT) is an atomic decomposition
that represents a signal in terms of shifted/dilated versions
of a prototype bandpass wavelet function and shifted
versions of a low-pass scaling function [1]. Because of
its excellent time-frequency localization capability, the WT is
able to compress most of the energy of the time variations of
the filter in the lower resolution representation of the fading
process. This gives an approach that is highly effective in
fast fading environments and that overcomes in some sense
the problem of slow convergence. The paper is organized as
follows. In Section II, we review the system model, and in Sec-
tion III, we describe the algorithmic approach. In Section IV,
we motivate a reasonable reduced dimensional representation
of the separating filter, and in Section V, we present a real-time
implementation. In Section VI, the results of a simulation
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Fig. 1. System model in the uplink of a cellular system.

analysis prove the superiority of the proposed time-variant filter
as opposed to the traditionally proposed multiuser minimum
mean squared error (MMSE) detector.

II. SYSTEM MODEL

In this section, we quickly review the system model in the
reverse link of a CDMA cellular system. No particular assump-
tion is made on the geometry of the array at the base station,
and we intentionally neglect the propagation assumptions of the
model. More details regarding these assumptions can be found
in [11], [13], [12]. In a DS/CDMA communication system the
information signal relative to theth user is given by

(1)
where

if
otherwise

and

is the message composed of zero-mean identically and indepen-
dently distributed -ary circularly complex symbols of duration

with variance and fourth-order zero lag cumulant equal
to . We also assume that all odd cumulants of are zero
(which is verified by any practical constellation). Theusers
asynchronouslyshare the common channel using the signatures
waveforms

(2)

where is the chip period and
is the pseudonoise spreading sequence of

length . The spreading signal waveform (2) of theth
user has duration and is normalized to unit power. If
an equivalent low-pass representation is employed, the

th transmitted spread-spectrum signal can be written as
. This signal is

distorted by multipath RF propagation and multiple-access
interference caused by other users. Each mobile transmitter has

a single antenna (see Fig. 1), while at the base station, the mul-
tiplexed signal is received through an-sensor antenna. The
received signal at the base-station receiver can be represented1

[23], [24], [25], [10] as

(3)

where ( denotes convolu-
tion) is the combined impulse response of each signal path of the

th spreading waveform and the channel from theth user to the
th sensor, , are the received signal power and the car-

rier phase of the th transmitted signal relative to theth user,
respectively. The channel between the th transmitter
and the th sensor for and
is

(4)

are the normalized fading complex envelope processes
so that reflects the th user received energy over the time
period corresponding to , is the delta function. The
noise in (3) is white Gaussian, with two-sided power spectral
density ; it can also represent the surrounding cell in-
terference, plus noise. Multipath channels enhance interference
among users, introducing intersymbol interference and addi-
tional correlation between the spreading waveforms. Received
energies are assumed invariant over the duration of the message:

for We assume that the receiver
has perfect knowledge of the powers, time delays, and phase
lags of every received user signal. At the receiver, a bank of
filters for each sensor (see Figs. 2 and 3), each filter matched
to a delayed replica of the wanted spread-spectrum signature,

1Equation (3) with (2) and (1) assumes the code remains the same from bit
to bit for a particular user. However IS-95 and many other CDMA systems use
different parts of a longer code for each bit. Besides substitutinga (�), where
now the code utilized by thekth user depends on the bit index(i), the rest of
the signal model is still valid for systems using long codes (defined aperiodic
systems in [9]). For simplicity of exposition we limit our model description to
periodic systems. Since the same multichannel model (6) can be derived for the
aperiodic (long codes) case the presentation of the algorithms that follow also
apply to practical CDMA systems like third-generation (3G)-CDMA and IS-95.
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Fig. 2. Architecture of the receiver.

performs despreading with the signatures in (2) and is sampled
at symbol rate to obtain the set of samples

(5)

The input/output relation for the multichannel discrete-time
system can be written as

(6)

where

(7)

and is the noise component.

The recovery of the input signals can be achieved by
means of a linear -input -output time-variant filter
(see Fig. 4) that can be represented at time stepin the
-domain as with length

. Main objective for is to achieve
distortionless reception[11], [12] at any time step . If we
define

with

...
...

distortionless receptionmeans that

(8)
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Fig. 3. Signal processing subsection relative to antennak.

is verified at any where is a permutation matrix

integer for

(9)

and the organization of the polynomials ( -trans-
forms of ) in is given by

...

...
...

Conditions for the existence of a filter were detailed in
[11] and [12]. The output of the filter relative to theth symbol
relative to the th user is denoted and can be expressed as

(10)

III. A LGORITHMIC APPROACH

Minor modifications of the derivations reported already in
[11] and [15] (in fact time-varying cumulants have to be used
due to the variations of the fading coefficients) give the super-
exponential time-varying equations2 (see also the Appendix)

(11)

(12)

where and are the weights of the filter

2The notationAy is used for the pseudoinverse of the matrixA.
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at time obtained in the first and second step, respectively,
of the iterative procedure, the matrix with dimensions

and the vector of fourth-order cumu-
lants with dimensions are given by

(13)

and

where

Observe at this point that we cannot proceed as in [11] be-
cause time variations of the fading coefficients and as a con-
sequence of the optimum distortionless reception filter do not
allow the super-exponential iterations to achieve convergence.
Ideally one should iterate several times (to obtain convergence)
the super-exponential procedure at every time instant: in other
words one would need to “freeze” the evolution of the fading
coefficients until convergence. This “naive” method prevents
the application of a real-time algorithm where recursive oper-
ations are also iterations of the super-exponential algorithm, the
strategy of the methods reported in [11] and [15]. We will at-
tack the problem exploiting some ideas on basis expansions of
fading processes studied in [4] and [16].

IV. BASIS EXPANSION FOR THETIME-VARIANT FILTER

It was shown in [11] that the filter coefficients obtained from
Step 1 of the procedure (11) and (12) are equivalently obtained
minimizing the following cost function:

(14)
or alternatively by solving an orthogonality-principle-like equa-
tion

(15)

for
These two expressions will be useful in the devel-

opment that follows.
Consider the fading coefficents and assume that

their variations can be represented for a large enoughas

where is a known basis (in [4] the basis is an exponen-
tial ), and are the coefficients of the
expansion. This representation is accurate under very general
assumptions detailed in [4]. A number of interesting practical
techniques can be developed because the method decouples the
unknown time variations of the channel from the set of time-in-
variant coefficients. This method reveals its value in rapidly
fading environments [4] where algorithms based on the typical
quasi-static assumption of the fading channel usually fail.

We follow here a similar approach with the important differ-
ence that the basis expansion is performed on the time-variant
distortionless reception filter Moreover we depart
from the simple exponential basis to improve the representation
accuracy.

A. A Wavelet Basis

As mentioned in Section I, we proceed to obtain a practical
basis representation for the time variant filter ap-
plying a discrete wavelet transform (DWT) with respect to
over available samples of the processes in (6) following an
approach first proposed in [4] and [16].

One approach to implement the DWT is to use a binary
subband tree structure that is constructed using stages of
two-channel filterbanks [21]. Define as a
dyadic perfect reconstruction filter bank [21] [in the-domain

]. The wavelet coefficients at resolution for
are given by [21]

(16)

(17)

The inverse wavelet transform is obtained from

(18)

This method can be applied recursively to obtain at generic res-
olution depth [20]

(19)

where and are discrete wavelet

transform coefficients and the filters and (with
real coefficients) are given in the-domain by

and
Using vector notation it is possible to express (19) simply as

(20)
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where the organization of the wavelet coefficients in
is

with3

Evidently
where for

As it is, (19) is of little practical interest, however one can
determine which components of the expansion (19) can be ne-
glected (i.e., zeroed) without compromising the parsimony of
the wavelet-based representation, and show in fact that it is pos-
sible to represent the time variations of the filter coefficients
in a reduced order dimensional space. Indeed this is one of the
celebrated merits of the wavelet transform [3]. In other words
the excellent “compacting” properties (see [3]) of the wavelet
transform are able to compress most of the energy of the time
variations of the time-variant filter in the lower resolution rep-
resentations of the processes and this makes the approach very
attractive in practice. Defining , as the vector ob-

tained zeroing the last elements of
and as the vector obtained zeroing the last

elements of we can then
write

(21)

It is possible to verify, for example, that for , speeds of
the mobiles up to 300 km/h and or it is possible
to impose in (19) for any without
significant loss of representation accuracy. This means that we
can have only or
wavelet coefficients in .

B. Interpretations

The method we have outlined can be interpreted as a subspace
selection procedure [19]. In fact the DWT of the-long vector4

representing
the dynamics of the time-variant separating filter at lagcan be
expressed as

(22)

where is an orthonormal linear transformation ex-
pressing the operation of the wavelet transform. Consider

, the matrix formed by the first
columns of corresponding to theshrinkage(that is

the zeroing) of the last components of . Ap-
plying the trasformation

(23)

3The notation[v] is used for thekth element of vectorv.
4We have compacted a generic set of indices ini = [i ; i ; i ]:

we essentially define a “subspace parameter” . The or-
thonormal columns of span an -dimensional subspace de-
fined such that (the space of any complex
vector of length ). Observe that when the transformation
is selected with , any estimate (or representation) of

is insensitive to disturbance components of for
and the resulting estimator (or rep-

resentation) has a lower variance than the full space estimator.
Also, any traditional adaptive scheme designed to follow the
variations of at any point attempts a full-space
estimation of the separating filter. In other words traditional
schemes will generate point-by-point estimates spanning
The proposed representation method when incorporated in prac-
tical detectors will achieve a decreased variance of the estimate
error. It is however important to emphasize that this advantage
is obtained at the expense of estimation bias because in practice

(24)

with holds only approximately true and while
the variance increases with the dimensions of the subspace (that
is ) the bias decreases [19]. Evidently the goal of selecting
a transformation is to optimize the trade-off between bias,
variance, and computational load.

C. Solution of the Time-Varying Super-Exponential Equations

We have shown that an accurate representation of the filter
variations is given by (21), or, renaming the components of the
vectors

also by

Then, we can evidently write (14) as

If we denote then (15) can
be expressed as

(25)

for
It is easily shown that
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Fig. 4. The (time-varying) filter relative to theith user.

the solution to the problem of obtaining ,

, from (25) is given by

(26)

where

(27)

(28)

and we have used the notation for
an -sample time average with

Observe that we used a technique similar to [5] where time-
varying moments of the form

and

are estimated by means of instantaneous products
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and

respectively, which are then collected for and
arranged to form an overdetermined system of linear equations
in Observe also that the first step of the super-exponential
algorithm becomes

(29)

while the second step can be in practice performed by scaling
[11] [15].

V. ADAPTIVE IMPLEMENTATIONS

Typical approaches to achieve real-time implementation for
(29) are gradient-based methods and recursive least qquares-
based (RLS) methods. The well-known recursion in both cases
is

(30)

where

if the algorithm of choice is the LMS andis a step-size param-
eter that controls the rate of adjustment. Using an RLS approach
we have where

,
and . is a forgetting
factor that can be set approximately equal to one because in re-
ality the basis coefficients are time-invariant and need only to
be identified, not tracked. This advantage in fast fading envi-
ronments is extremely valuable and in fact results in significant
performance advantages.

VI. SIMULATIONS

Since an analytical approach to the performance of the
outlined detector is beyond the scope and the length of this
paper we present the results of a simulation analysis. Consider
a mobile radio system when the uplink applies DS/CDMA
with a gross bit rate equal to 48.5 kbit/s. The users’ codes are
known at the receiver as the base station has allocated one code
for each user. We use Gold codes of 15 chips, 7 equipower
users and (two-path Rayleigh fading channel) in each
channel impulse response between each user and each antenna
array element. The antenna is a three-element uniform linear
array with 3/4 of a wavelength spacing (this spacing guarantees
uncorrelated scattering at the different antennas). The impulse
responses of the multipath channels are generated so that
the delays are constrained to be an integer number of chip
periods according to Table I. Users modulate data using QPSK.
A synchronization unit is assumed to estimate the delays
exactly. We assume the first user to be the reference user. The
signal-to-noise ratio (SNR) in the figures is equal to .
A training sequence of 14 symbols is transmitted every 256
symbols, to train the time-variant filter. During training the
filter uses the known sequence instead of in the adaptive
scheme (the same approach was introduced in [11] to solve the

TABLE I
CHANNEL PROPAGATION ENVIRONMENTS FORPERFORMANCEEVALUATION

RESULTS: DELAY SPREADS OF THEMOBILES

start-up problem). The slots are generated of dyadic length and
are Daubechies filters of order 3. The Doppler

frequency describes the second order statistics of channel varia-
tions. Doppler frequency is related through wavelengthto the
th mobile transmitter velocity expressed in kilometers/hour

(km/h). The model used in this case is based on the wide-sense
stationary uncorrelated scattering (WSSUS) assumption. The
complex weights are generated as filtered Gaussian processes
fully specified by the scattering function. Particularly each
process has a frequency response equal to the square-root of the
Doppler Power Density Spectrum.5 It is then straightforward
to verify that for speeds of the mobile up to 300 km/h and

or it is possible to retain only or
wavelet coefficients in Fig. 5

shows experiments for a time-varying multipath at 100 km/h,
in a single user environment (user 1 in Table I). The DWT
super-exponential filter uses a decomposition of a 500 samples
(symbol spaced) snapshot of the received signal. Dashed
traces represent the real part of the highest energy tap of the
optimum separating filter computed as described in [11] at
any time step assuming perfect channel information. Solid
traces are obtained using a DWT decomposition for the
real part of the tap dynamics (top figure) and the traditional
MMSE-QR-RLS (see below for the description of the method).
The excellent “compacting” properties (see [3]) of the wavelet
transform are able to compress most of the energy of the time
variations of the channel in the low resolution representation
in fact we retain only 16 wavelet coefficients. Bit-error rate
(BER) analysis results are shown in Figs. 6 and 7. We compare
with the multiuser MMSE detector updated using the QR-RLS
algorithm (probably the best method in terms of tracking
performance). The MMSE-QR-RLS at every iteration solves
the following minimization problem:

(31)

where and are recursively defined as

5The Doppler spectrum is approximated by rational filtered processes. The
filters are described by their 3-dB bandwidth which is called the normalized
Doppler frequency. The additional assumption is that all channels and complex
weights have the same Doppler spectrum.
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Fig. 5. Example of DWT-based tracking event for a 500-sample trace of the optimal separating filter (real part of the highest energy tap) as it compareswith the
QR-RLS tracking algorithm. Dashed lines denote the true trajectory of the optimum filter computed assuming perfect channel knowledge.

Fig. 6. BER for seven users, 15-length Gold codes in fast frequency-selective
fading channels. For propagation parameters, see Table I. Solid curves denote
the time-varying separating filter based on the DWT representation. Dashed
curves denote the MMSE time-invariant filter based on the traditional adaptive
QR-RLS scheme.

with

The solution obtained applying a recursive QR decomposition
to the data matrix defines the QR-RLS (QR decompo-
sition based recursive least squares) [14] algorithm which at-
tempts convergence to the MMSE solution for. We use in
the DWT representation of the time-variant filter and
retain (for ). BER is relative to the first

mobile transmitter. Ideal frame and symbol synchronization is
assumed and the LMS is used to update the wavelet coefficients.
A sample size of 10 was used to estimate an error probability
of 10 . Fig. 6 shows results for the propagation environment
reported in Table I and 1 Antenna compared to three-antenna
reception. Evidently this scenario represents a fast fading envi-
ronment, such as those practically found in high mobility cel-
lular systems. is the length of the filter, is
the number of sensors at the receiving antenna array. It is clear
that the MMSE approach (dashed curves in Fig. 6) is inadequate
basically because of the rapid variations of the channels. Fig. 7
shows the results of experiments with only the first three users
of Table I active simultaneously, one single antenna, SNR per
bit equal to 32 dB, and speed of the three mobile transmitters
increased up to 400 km/h. This last experiment clearly empha-
sizes the advantages of the proposed method in extremely fast
fading. The DWT-based filter is significantly less sensitive to
Doppler spread increases.

VII. CONCLUSION

We have presented a new approach to suppress mul-
tiuser interference and channel distortions in a code-division
multiple-access system when RF propagation between the
users and the base-station receiver is distorted by arbitrarily
time-varying multipath. The problem can be reconnected to
a multichannel time-varying deconvolution problem when
the channel is possibly non minimum-phase and the input
distribution is non-Gaussian. The unknown optimum filter time
variations are decomposed using optimal unconditional bases
such as orthonormal wavelet bases and obtained by applying
the super-exponential equations [11] and [15]. We focused
on a multiscale time-variant adaptive filter characterized by
the same dynamical features exhibited by the channel and we
proved the approach extremely effective with respect to the
traditional MMSE receiver. The fundamental contributions of
the paper are summarized in these points as follows.

• A novel practical approach to multi-input multi-output
(MIMO) blind time-variant deconvolution based on
wavelet basis expansion was introduced.

• The application of the new method to the DS/CDMA de-
tection problem was detailed.
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Fig. 7. BER for three users, 15-length Gold codes in fast frequency-selective fading channels with increasing speed of user 1, 2, 3. For propagation parameters,
see Table I, first three users. One single antenna is used and the SNR per bit is equal to 32 dB. Solid curves denote the time-variant separating filter based on the
DWT representation. Dashed curves denote the MMSE time-invariant filter based on the traditional adaptive QR-RLS scheme. The 90% confidence intervals for
the measured BER are also shown.

• An important observation was made: multiscale decom-
position imposes a subspace constraint to the dynamics of
any deconvolution filter and appears to accelerate dramat-
ically the convergence and tracking capability of any blind
or nonblind adaptive algorithm.

Simulation results have been shown to demonstrate that the ap-
proach outperforms typical alogorithms (based on a quasi-static
or slow-fading assumption) in time-varying channels character-
ized by Doppler spreads in excess of 50 Hz.

APPENDIX

TIME-VARYING CUMULANTS AND THE SUPER-EXPONENTIAL

TIME-VARYING EQUATIONS

The th-order time-varying cumulant for the process (6) (in
this paper or ) at lag is
indicated as

(32)

where denotes an optional complex conjugation of. It is
easily shown that a generalization of the equations shown in
[11] (valid for time-invariant channels) can be obtained from
the time-varying Bartlett equation (see [17]) (valid for
only in the absence of noise)

(33)

for chosen in the set
chosen in the set We do not report the detailed
derivation of the time-varying super-exponential equations
because they can be easily derived from equations already
available in [11] and [15]. In fact evidently in the absence of
noise

and

are equations analogous to (20) and (21) of [11], respectively,
with

for
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